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Higher Heart-Rate Variability Is Associated with
Ventromedial Prefrontal Cortex Activity and Increased
Resistance to Temptation in Dietary Self-Control Challenges

Silvia U. Maier and ““Todd A. Hare

Department of Economics, Laboratory for Social and Neural Systems Research, University of Zurich, CH-8006 Zurich, Switzerland

Higher levels of self-control in decision making have been linked to better psychosocial and physical health. A similar link to health
outcomes has been reported for heart-rate variability (HRV), a marker of physiological flexibility. Here, we sought to link these two,
largely separate, research domains by testing the hypothesis that greater HRV would be associated with better dietary self-control in
humans. Specifically, we examined whether total HRV at sedentary rest (measured as the SD of normal-to-normal intervals) can serve as
a biomarker for the neurophysiological adaptability that putatively underlies self-controlled behavior. We found that HRV explained a
significant portion of the individual variability in dietary self-control, with individuals having higher HRV being better able to down-
regulate their cravings in the face of taste temptations. Furthermore, HRV was associated with activity patterns in the ventromedial
prefrontal cortex (vmPFC), a key node in the brain’s valuation and decision circuitry. Specifically, individuals with higher HRV showed
both higher overall vmPFC blood-oxygen-level-dependent activity and attenuated taste representations when presented with a dietary
self-control challenge. Last, the behavioral and neural associations with HRV were consistent across both our stress induction and control
experimental conditions. The stability of this association across experimental conditions suggests that HRV may serve as both a readily
obtainable and robust biomarker for self-control ability across environmental contexts.
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Self-control is associated with better health, but behavioral and psychometric self-control measures allow only indirect associa-
tions with health outcomes and may be distorted by reporting bias. We tested whether resting heart-rate variability (HRV), a
physiological indicator of psychological and physical health, can predict individual differences in dietary self-control in humans.
We found that higher HRV was associated with better self-control and improved predictions of choice behavior. Specifically,
higher HRV was associated with more effective downregulation of taste temptations, and with a diminished neural representation
of taste temptations during self-control challenges. Our results suggest that HRV may serve as an easily acquired, noninvasive, and
low-cost biomarker for self-control ability. j

ignificance Statement

Introduction

Self-regulation has been associated with a wide range of life out-
comes, from educational achievement and socioeconomic status
to mental and physical health (Mischel et al., 1989; Duckworth,
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2011; Moffitt et al., 2011). Therefore, accurate predictors of indi-
viduals’ self-regulatory abilities are important tools in both basic
scientific research as well as applied domains, including educa-
tion and medicine. Self-regulation is generally assessed in specific
domains by psychometric questionnaires or laboratory tasks.
Unfortunately, participants can potentially distort these mea-
surements by reporting socially desirable answers or behaving
according to the presumed goals of the experimenter. Therefore,
measures based on physiological readouts that are easy to obtain,
domain independent, and robust to reporting biases could be
important tools in the assessment of self-control.

One such readout is heart-rate variability (HRV). Measures of
HRV have been linked to self-regulatory capacities and perfor-
mance in the domain of emotion (Thayer and Lane, 2000, 2009),
raising the question of whether they might serve as more general
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predictors of self-control. HRV is a well established physiological
characteristic of all vertebrates (Grossman and Taylor, 2007): the
timing between subsequent heartbeats oscillates on the order of
milliseconds and no two neighboring beat pairs (RR intervals) are
of exactly the same length (Camm et al., 1996). An animal’s HRV
is sensitive to both physical and mental strain (Porges and Raskin,
1969), and differences in resting HRV can distinguish between
states of health and disease (Heni et al., 2014, 2015). High resting
HRYV has been associated with good physical (Masi et al., 2007;
Brindle et al., 2015) and mental health (Thayer and Brosschot,
2005), while chronic decreases in HRV indicated disease states
and slow recovery from stress (Weber et al., 2010; Stalder et al.,
2011).

The polyvagal (Porges, 1995, 2001) and neurovisceral integration
(Thayer and Lane, 2000, 2009) theories postulate a mechanistic link
between HRV and self-regulation. Both associate CNS regulation of
the cardiovascular system, which is necessary to prepare reactions to
challenges in the environment, with adaptive behavior at a higher
cognitive level. However, we note that it remains unclear to what
degree the central versus peripheral nervous system influences HRV.
Although we do not yet fully understand all of the physiological and
cognitive factors driving HRV (Heathers, 2014), we build on previ-
ous proposals (Grossman and Taylor, 2007) and posit that HRV
serves as a readout of an individual’s allostatic capacities to integrate
behavioral strategies and energy stores in response to demands in the
environment.

Higher HRV has been linked to several cognitive processes
that support self-regulation, including the following: (1) reallo-
cation of attention (e.g., disengaging from stimuli that are not
threatening in the current context), which may reduce allostatic
load (McEwen and Wingfield, 2003); (2) persistence (Reynard et
al., 2011); and (3) working memory (Gianaros et al., 2004; Han-
sen et al., 2004). In contrast, low HRV has been associated with
disinhibition and dysregulated social conduct (Beauchaine, 2001,
2007). Furthermore, Daly et al. (2014) reported that higher trait
self-control, measured using the self-report scale developed by
Tangney et al. (2004), correlates with higher resting HRV. How-
ever, the links between HRV and self-control at the neural level
remain unknown.

In this study, we used fMRI to investigate the relationship
between dietary self-control and resting HRV. We hypothesized
that better self-control should be associated with higher HRV,
and that individual differences in HRV would be associated with
neural processing within a self-control network, including the
dorsolateral prefrontal cortex (dIPFC) and the ventromedial pre-
frontal cortex (vmPFC; Hare et al., 2009; Maier et al., 2015). We
indeed found that higher resting HRV was associated with better
dietary self-control. Furthermore, we found that HRV positively
correlated with activity in the vmPFC when individuals faced
self-control challenges, and that high-HRV individuals showed
a decreased sensitivity to taste attributes in the vmPFC. These
vmPFC findings suggest a neural mechanism for the down-
regulation of tempting taste attributes that may facilitate di-
etary self-control.

Materials and Methods

Participants

Fifty-one men participated in this study. The sample is the same as in the
study by Maier et al. (2015), where we reported the effects of stress on
behavioral and neural self-control processes, but no heart-rate analyses.
We included only male participants to facilitate the collection and anal-
ysis of cortisol responses to stress in our previous work. Baseline heart-
rate data for two participants were lost due to recording failure. In the
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present report, we include the subset of participants for whom we have
both heart-rate and fMRI data (22 control and 27 stress group partici-
pants). The Ethics Committee of the Canton of Zurich approved this
study and all participants provided written informed consent on the
study day. All participants were right-handed and had normal or cor-
rected to normal vision. None of them reported any history of somatic or
psychiatric disease, nor did they take any prescription medication. On
average, participants in the sample had a blood pressure in the (high)
normal range for their age group (mean + SD: systolic blood pressure,
130 = 14 mmHg; diastolic blood pressure, 77 = 9 mmHg).

Participants were excluded during the recruitment stage if they suf-
fered from any allergies, food intolerances, or eating disorders. We also
excluded individuals who followed a specific diet (e.g., eating vegetarian,
vegan, gluten-free/lactose-free, etc.), or who did not report enjoying and
regularly consuming snack foods (regularly was defined as >2 occasions
per week). A final eligibility criterion was that participants had to report
that they were trying to maintain a healthy lifestyle, including exercise
and an overall balanced diet. Together, these criteria ensured that partic-
ipants would face a meaningful self-control challenge in the dietary-
choice task.

To ensure a homogeneous reaction of the hypothalamic—pituitary—
adrenal axis in response to stress induction, participants were asked to
abstain from drinking alcoholic or caffeinated beverages in the 18 h
before the study, to not exercise in the 6 h before the study, and to come
to the laboratory well rested. We only recruited nonsmokers who had no
history of drug abuse. We asked participants to go to bed by midnight at
the latest on the day before the study and to get a good night’s sleep. We
instructed participants to not take any medication that alters the blood
flow (e.g., analgesics) in the 72 h before their appointment. To motivate
the dietary choices, participants were instructed to eat a small meal
(sandwich or salad with ~450 kcal) 3 h before the study and consume
nothing but water after that.

Allen et al. (2007) identified age, exercise habits, and obesity as poten-
tial confounding factors for heart-rate analyses. Our sample was rela-
tively homogeneous with regard to these factors. The men were on
average 21.2 years old (SD, *2 years), had a normal body mass index
(BML mean + SD: 22.7 = 2.1), trained on average 1.6 (SD, £1.4) times
per week for building strength, and had completed an average of 1.9 (SD,
*+1.3) cardio training sessions per week during the past 4 weeks before
the study, resulting in a combined mean of 3.6 (SD, £2.1) weekly train-
ing sessions per participant. Other factors identified by Allen and col-
leagues, including smoking, gender, caffeine and alcohol intake, and
circadian rhythm, were controlled for by our study exclusion criteria and
design.

Procedure
In the 30—40 min preceding the resting HRV measurement, participants
had rated 180 food items for health and taste to create tempting dietary
choice pairs. After the heartbeat-interval measurement, a stress induc-
tion [Socially Evaluated Cold Pressor Test (SECPT)] or control proce-
dure was administered. Assignment to the stress induction or control
conditions was unknown to both the participant and the experimenter at
the time of HRV measurement. However, participants knew they would
be randomly assigned to one treatment or the other based on the infor-
mation provided with the consent forms at the beginning of the study.
The SECPT treatment elicited an acute stress response, as indicated by
higher cortisol values in the Stress group (mean = SEM cortisol at max-
imum: Stress, 9.64 = 1.09 nwm/l; Control, 6.6 £ 0.67 nm/1), and higher
reports of perceiving to be stressed than the Control group (on a visual
analog scale from 0 to 100 with 0 “not at all stressed and 100 “extremely
stressed”: mean = SEM, Stress, 33 * 4%; Control, 19 * 5%). Details of
the stress induction and behavioral task were reported by Maier et al.
(2015). Here, we focus on the relationship between the baseline HRV
parameter and dietary self-control success (SCS) and its neural corre-
lates. However, given that the stress treatment is known to change dietary
choices (Maier et al., 2015), we included it as a factor in all regression
models.

Immediately after the stress induction, participants were scanned with
blood-oxygen-level-dependent (BOLD) fMRI while they made choices
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in a dietary self-control task. The screen always
depicted two food items, and participants had
to choose whether they wanted to eat the item
on the right or on the left (Fig. 1a). The binary
food choices fell into one of two categories. In
the first, choosing the healthier item is trivial
because the healthier item was also tastier. We
refer to this category as no-challenge trials be-
cause there is no self-control challenge. In the
second choice category, self-control chal-
lenges, the healthier item was the less tasty of
the two foods and thus presented a conflict be-
tween taste and health attributes. Self-control
challenges were presented on approximately
half of the 210 trials for each participant. To
examine the variability of the challenge that
different participants faced, we normalized the ratings to fall between 0
and 100 points, and calculated absolute taste and health differences be-
tween every pair of food items each participant faced. On a scale from 0 to
100, the mean health difference was 34 = 25 points (mean = SD) and the
mean taste difference was 29 * 21 points.

The behavioral and fMRI analyses in this paper focus on the self-
control challenge cases. Before the task started, participants were re-
minded to choose the healthier item as often as they could, consistent
with their healthy lifestyle goals. Participants knew that one of their
choices would be realized in the end, and they would have to eat whatever
they chose on the trial that was randomly drawn for being paid out.

Figure 1.

Psychometric inventories

German versions of the Spielberger State-Trait Anxiety Inventory (Laux
etal., 1981), Three Factor Eating Questionnaire (Pudel and Westenhofer,
1989), and Behavioral Inhibition and Activation Scales (Strobel et al.,
2001) were administered at the end of the study. Data for the trait anxiety
scale of the State-Trait Anxiety Inventory are missing for one participant,
as he failed to complete the second page of the questionnaire.

Statistical analyses

All behavioral data were analyzed using either the Matlab (Release 2014b,
version 8.4.0.150421, MathWorks, RRID:SCR_001622) or R (Version
3.2.1; R Core Team, RRID:SCR_001905) statistical software packages.
The fMRI results were depicted using the MRIcron software package
(http://www.mccauslandcenter.sc.edu/mricro/mricron/, RRID:SCR_00
2403). All correlations reported in this paper were assessed with a non-
parametric bootstrap method. Two-tailed p values for correlations were
obtained by testing the Pearson’s correlation coefficients (r) against a
null distribution generated from 5000 permutations of the data. The 95%
confidence intervals (CIs) for the correlations were computed from 5000
bootstrapped samples of the data. The multiple regression model in
Equation 2 below was fit using the “Im” function in R. To visualize the
HRYV by taste and health difference interactions, we plot the estimated
SCSlevels at specific combinations of HRV and taste or health differences
from this regression model (Fig. 2b,c).

Heart-rate data acquisition

We measured baseline heart rate at rest with the Polar RS 800 CX system
[for a cross-validation of this method with echocardiogram (ECG), see
Quintana et al., 2012]. All measurements were collected between 1:30
P.M. and 5:00 P.M. to control for circadian rhythms (Heathers, 2014).
The baseline measurement was always taken in a single session before any
stress or control treatment was administered. Participants were seated in
a quiet room and instructed that upon mounting the Polar watch and
pressing start, they would need to sit upright and remain quiet and calm
during the subsequent baseline-recording interval. A baseline recording
was taken for 6 min. The first 3 min of the recording were discarded from
the analysis to yield a set of data that were less affected by such factors as
initial motion while acclimatizing to the recording environment (Quin-
tana et al., 2016). We focused on baseline (i.e., resting) heart-rate mea-
sures to obtain a domain-general index of HRV.
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Behavioral and physiological measurements. a, In the dietary self-control task, participants made on the screen a
series of choices between two items that represented items they would eat at the end of the study. In the challenge trials that are
the focus of this paper, choosing the healthier food required forgoing the tastier option. b, This stylized sketch highlights the R
peaks of the ECG curve. The RRinterval describes the distance between two subsequent R peaks. In the healthy heart, the length of
subsequent RR intervals consistently differs on the order of milliseconds, which enables HRV characteristics to be calculated.

Heart-rate data analyses

HRV can be calculated in two different domains: time and frequency.
The full range of measures is discussed in the guidelines by the Task Force
on HRV (Camm et al., 1996). Time-domain measures have the advan-
tage of being more robust than frequency measures. Two different time-
domain measures are commonly used and both characterize the
distribution of interbeat intervals, which are defined as the time between
two subsequent heart beats [i.e., the difference between two R peaks in
the ECG (Guyton and Hall, 2006), hence also called the “RR interval”;
Fig. 1b]. The SD of all RR (also “NN” for “normal-to-normal”) intervals
(SDNN) describes the total HRV within a given period (Eq. 1). The root
mean square of successive differences (RMSSD) calculated between ad-
jacent RR intervals is more sensitive to influences of short-term regula-
tion of the heartbeat. Here we focus on HRV at rest (i.e., in the absence of
specific, discrete input stimuli), and thus take SDNN as our primary
measure of variability.

We chose total HRV (measured as SDNN) as our biomarker for two
reasons. First, SDNN is deemed to be the most robust measure of HRV.
Among all commonly computed HRV measures, it has been reported to
be least compromised by different data preprocessing pipelines, espe-
cially the application of artifact correction (Salo et al., 2001). Second, the
process of dietary choice is a complex behavioral outcome that may not
only depend on a capacity for effective cognitive regulation that helps to
achieve self-control goals, but may also be influenced by peripheral fac-
tors (e.g., endocrine status, metabolism, and energy expenditure) that are
indicative of the current state of the organism. SDNN reflects all influ-
ences on the RR interval series, while it is known to correlate highly,
although not perfectly, with measures that putatively reflect phasic vagal
control of cardiac variability in measures taken under sedentary resting
conditions (Allen et al., 2007).

The complete recording of RR intervals for each participant was ex-
tracted using the Polar software, without any transformations of the data.
Three-minute intervals of the raw data were then preprocessed with the
Artiifact toolbox (Version 2.08, 64-bit; Kaufmann et al., 2011), which has
a better artifact detection rate and shows fewer false detections than the
commonly used Kubios HRV toolbox. To identify artifacts, the Artiifact
toolbox implements the algorithm of Berntson and Stowell (1998),
which aims to exclude any potential artifacts before computing the cri-
terion for identifying true artifacts. Based on the report of Salo and
colleagues (2001), who compared editing procedures for correcting sin-
gle RR artifacts, the identified artifacts were deleted from the RR se-
quence to obtain the cleanest estimate for SDNN. On average, we
corrected 2.1% (SD, %£3.1%) of the RR intervals in each sample. Apart
from two datasets that had a high number of artifacts requiring correc-
tion (12.6 and 10.5% RR intervals removed), all other datasets had be-
tween 0 and 6% artifacts corrected (21 datasets were diagnosed as free of
artifacts). As a high number of corrected artifacts might be a concern for
interpreting our findings, we checked all models for robustness with
regard to the number of corrected artifacts.

SDNN was calculated as follows (Eq. 1):

1 & .,
SDNN = \/N_ : FE} (RR; — RR)
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Figure2. Combining behavioral and HRV measures to predict SCS rates. HRV and restrained eating trait (RE) were uncorrelated and predicted independent and significant portions of the variation

in self-control behavior in our combined behavioral model (Table 2). a, This scatter plot shows the association between predicted and observed SCS rates. We used the model listed in Equation 2
together with aL0S0 procedure to predict SCS. Including the predictors for baseline HRV and its interactions with taste and health aspects yielded a coefficient of determination > = 0.77. Moreover,
omitting HRV from the predictive model resulted in a 12% decrease in explained variance. b, ¢, Error bar plots convey the nature of the HRV by taste and health interactions listed in Table 2. b, The
HRV endophenotype interacted with the level of taste temptation faced during self-control challenges. To visualize this result, the plot shows the response patterns from participants falling into
the highest (black square) and lowest (gray diamond) quartiles of total HRV. The x-axis represents the average taste difference level (i.e., self-control difficulty) a participant faced during the
dietary-choice task. The estimated SCS on the y-axis represents the model fit for discrete levels of the HRV by taste temptation interaction. Participants with higher HRV overcame even the largest
taste temptations, whereas participants with low HRV who faced large taste temptations frequently failed to use self-control. ¢, Interaction with the average difference in health: the higher the
health difference between the two foods, the more health benefit could be gained by refusing the tastier item. The x-axis represents the average health difference level (i.e., potential self-control
benefit) a participant faced during the dietary-choice task. The estimated SCS on the y-axis represents the model fit for discrete levels of the HRV by health gain interaction. Participants with the
lowest HRV rarely used self-control if potential health gains were small, whereas participants with the highest HRV engaged self-control at a relatively high level regardless of how much health
benefit could be gained. Error bars in panels b and ¢ denote standard errors of the mean for the estimated coefficients.

HRYV was calculated with the Artiifact software suite, using fast Fourier
transforms (Berntson and Stowell, 1998; Kaufmann et al., 2011) with an
interpolation rate of 4 Hz (spline interpolation) and a Hanning window
width that matched the total length of the edited recording (180 s or
slightly less in case of deletion correction). Frequency bands were
bounded between 0.003 and 0.04 Hz for the very low frequency band,
0.04 and 0.15 Hz for the low-frequency band, and 0.15 and 0.4 Hz for the
high-frequency band.

fMRI data acquisition

Images were acquired using a Philips Achieva 3 T whole-body scanner
with an eight-channel sensitivity-encoding head coil (Philips Medical
Systems) at the Laboratory for Social and Neural Systems Research, Uni-
versity Hospital Zurich. Stimulus presentation was controlled with the
Psychophysics Toolbox Software [Psychtoolbox 3.0 (Brainard, 1997),
RRID:SCR_002881]; the paradigm was presented via a back-projection
system to a mirror mounted on the head coil.

We acquired gradient echo T2*-weighted echo-planar images (EPIs)
with BOLD contrast (41 slices per volume; field of view, 200 X 126.5 X
200 mm; slice thickness, 2.5 mm; 0.6 mm gap; in-plane resolution, 2.5
2.5 mm; matrix, 80 * 80; repetition time, 2460 ms; echo time, 30 ms; flip
angle, 77°) and a SENSE (sensitivity-encoding for fast MRI) reduction
(i.e., acceleration) factor of 2. Volumes were acquired in axial orientation
ata +15° tilt to the anterior commissure—posterior commissure line. We
collected 161 volumes in ascending order during each of the three exper-
imental runs, together with five “dummy” volumes at the start and end of
each run. A T1-weighted turbo field echo structural image was acquired
in sagittal orientation for each participant at the end of the scanning
session with the same angulation that applied to the functional scans (181
slices; field of view, 256 X 256 X 181 mm; slice thickness, 1 mm; no gap;
in-plane resolution, 1 * 1 mm; matrix, 256 * 256; repetition time, 8.4 ms;
echo time, 3.89 ms; flip angle, 8°). To measure the homogeneity of the
magnetic field, we collected BO/B1 maps before the first and second run
and before acquiring the structural scan (short echo time, 4.29 ms; long
echo time, 7.4 ms). We measured breathing frequency and took an ECG
with the in-built system of the scanner to correct for physiological noise.

fMRI preprocessing

Functional data were spatially realigned and unwarped with statistical
parametric mapping software (SPM8, Update Rev. Nr. 5236; Functional
Imaging Laboratory, University College London, RRID:SCR_007037),
segmented according to the participant’s T1-weighted high-resolution
structural image and normalized to the individual mean EPI template

before smoothing with an isometric Gaussian kernel (4 mm full width at
half maximum). As a last step in preprocessing, we used RETROICOR, as
implemented in the PhysIO toolbox, to model respiration and heartbeat
(Glover etal., 2000) to account for fluctuations in the BOLD signal due to
physiological noise. The PhysIO Toolbox by Kasper et al. (2009) is dis-
tributed as open source code as part of the TAPAS (Translational Algo-
rithms for Psychiatry-Advancing Science) software collection (www.
translationalneuromodeling.org/tapas/). Following Harvey et al. (2008),
the PhySIO algorithm uses Fourier expansions of different order to the
estimate the phases of cardiac pulsation (third order), respiration (fourth
order), and cardiorespiratory interactions (first order). For two partici-
pants, the scanner could not save physiological data due to a technical
problem. For these participants, only the standard motion-correction
procedure was applied.

fMRI analyses

General linear models. In all fMRI analyses, regressors in the models were
defined as boxcar functions with durations equal to the reaction time on
each trial. All three fMRI models also included regressors for head-
motion, respiratory, and cardiac effects on each trial to account for vari-
ance in the BOLD signal associated with these sources of noise.

Our primary general linear model (GLM), GLM-CH, tested for re-
gions that correlated with HRV during self-control challenges. The re-
gression modeled as events of interest all trials that contained (1) a
challenge, (2) no challenge, while controlling for (3) healthier experi-
menter recommendations and (4) less healthy experimenter recommen-
dations. Note that the experimenter recommendations were included in
the choice task to test a separate hypothesis unrelated to the current
report. Those recommendations are not discussed here. Self-control
challenge and no-challenge trials included parametric modulators for
relative health and taste differences. We computed a first-level contrast
for Challenge > No Challenge trials. At the second (group) level, we
examined whether increases in BOLD activity on challenge trials were
correlated with HRV levels using nonparametric permutation tests (1 =
5000 permutations) and included threshold-free cluster enhancement
(TECE) as implemented in the function “Randomize” in the Oxford
Centre for Functional MRI of the Brain (fMRIB) Software library [FSL 5,
FMRIB (Winkler et al., 2014), RRID:SCR_002823]. We used FSL for the
group-level analyses because the TFCE and permutation algorithms are
more fully documented and run considerably faster in FSL compared
with their implementation in SPM12.
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A second, separate GLM, GLM-SV, was computed to determine
whether BOLD activity was related to the integrated value of the chosen
food. This GLM included parametric regressors for the integrated sub-
jective value of the chosen and nonchosen food items on every choice
onset. Once again, additional regressors controlling for the impact of the
experimenter recommendations were included in the model with sepa-
rate regressors for events in which participants chose based on the rec-
ommendation, and in which they did not follow the recommendation.
We modeled each participant’s subjective value of food items on every
trial by combining the weighted values for the taste and health of each
food. The weights were derived from individual logistic regressions on
the participant’s choices (identical to Maier et al., 2015). Briefly, for each
participant, alogistic regression estimated the probability of choosing the
left item as a function of the taste and health of the left and right item,
with all ratings z-scored within participant before entering them in the
model. Two additional binary regressors indicated whether the left or
right item had been recommended. These regressors for left and right
item recommendations took the value of 1 when the item was recom-
mended, and 0 when it was not recommended. When no recommenda-
tion was given on a trial, both regressors had a value of zero. Note that the
spatial presentation of the items was completely randomized, so that the
left item was equally likely to be the healthier or the tastier of both
options. We took the mean of the taste betas for the left and right item
obtained for each participant, averaging them into a common taste
weight for this individual. The same was done for health. These averaged
taste and health weights were then used to multiply the z-scored taste and
health values of each item presented in the choice paradigm. To obtain
the subjective value for each food, the weighted taste and health values
were added up to a weighted subjective value separately for the left and
right food items.

We computed a first-level contrast for the chosen food value for each
participant and extracted betas from this contrast within our functional
ROI of the vimPFC.

To examine the impact of health and taste attributes on the BOLD
signal, we used a third GLM, GLM-HT, that modeled the following five
events: (1) all choices, (2) trials on which the healthier food was recom-
mended and chosen, (3) trials on which the healthier food was recom-
mended and not chosen, (4) trials on which the less healthy food was
recommended and chosen, and (5) trials on which the less healthy food
was recommended and not chosen. Note that the 30 baseline trials did
not contain any recommendation and, therefore, the sum of regressors
2-5 does not equal regressor 1. The first regressor for all choices included
the following four parametric modulators: (1) health of the chosen item
(Hc), (2) taste of the chosen item (Tc), (3) health of the nonchosen item
(Hnc), and (4) taste of nonchosen item (Tnc). These parametric regres-
sors were not orthogonalized with respect to one another. We computed
first-level contrasts for Tc—Tnc and Hc—Hnc. We then extracted the betas
for these contrasts from our functional vmPFC ROI. The significance of
the correlations between BOLD sensitivity to taste and health differences
in the vmPFC and HRV were determined from 5000 permutations of the
data.

Anatomical masks. The combined anatomical mask for the vmPFC was
constructed from a conjunction of the bilateral frontal pole, frontal me-
dial, paracingulate, and subcallosal cortex areas that exceeded 20% prob-
ability of belonging to the respective structure in the Harvard—Oxford
Cortical Atlas (HOA; Desikan et al., 2006). To limit the mask to our ROI
along the medial wall, the HOA-derived anatomical mask was intersected
with a rectangular box around the midline (coordinates in mm: x =
[—22,21],y = [—110,73],z = [—35,9]).

The anatomical mask of the left dIPFC was constructed from a con-
junction of the left inferior frontal gyrus (pars opercularis and reticularis)
and left superior frontal gyrus areas that exceeded 20% probability of
belonging to these structures, according to the HOA.

Because we tested two separate regions of interest (vmPFC and
dIPFC), we used a critical value of p < 0.025 (i.e., 0.05/2) for small-
volume correction at the voxel level.
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Table 1. GLM predicting total HRV (GLM-HRV)

Regressor 3 Estimate SEM t p
Intercept 189.41 3117 6.08 <0.001
Number of artifacts 5.07 1.49 3.41 0.0014
Mean heart rate —1.17 0.47 —248 0.017
Trait anxiety —0.57 0.63 —091 0.37

Results from a GLM with possible determinants of HRV (represented as untransformed values of SDNN in millisec-
onds): the number of artifacts corrected in the dataset and mean heart rate (after artifact correction by deletion). To
assess whether trait anxiety explains additional variance beyond an increase in mean heart rate, we added a
regressor with the trait anxiety score as measured by the Spielberger State-Trait-Anxiety Inventory, so that mean
heart rate and trait anxiety compete for variance in the same model. When doing so, mean heart rate accounts fora
decrease in HRV, but trait anxiety does not explain further variance. The results above hold when excluding the HRV
outlier from this model.

Health, taste, and appetitiveness ratings

Participants rated health, taste, and how appetizing they found the de-
picted foods on a continuous rating scale with anchor points from —5 for
“very untasty/unhealthy” to +5 for “very tasty/healthy”, or vice versa, to
counterbalance order effects. Taste and health ratings were not corre-
lated: the median correlation was —0.09 * 0.31 median absolute devia-
tion (MAD) in the Stress group, and —0.06 = 0.20 MAD in the Control
group. Neither health (r = —0.12, p = 0.40), nor taste (r = 0.09, p =
0.56), nor appetitiveness ratings (r = 0.13, p = 0.37) were correlated with
hunger levels.

Results

HRV

The mean duration of RR intervals across all participants was
929.3 * 136.3 ms (sample median of the median duration of RR
intervals: 947 = 115 ms), resulting in a mean heart rate of 66 * 10
beats per minute in our sample (values are derived after deletion
of artifacts). Our participants expressed a median total HRV
(measured as SDNN) of 98.7 * 30.1 ms MAD within our 3 min
baseline measurement. Consistent with previous reports (Tsuji et
al., 1996), HRV was inversely related to average heart rate (8 =
—1.17 £ 0.47, T= —2.48,p = 0.017; see Table 1). However, total
HRV did not differ between participants later assigned to the
Stress or Control groups (Stress, 98.7 = 29.6 ms; Control, 97.7 =
30.9 ms; p = 0.93; Z = 0.09; Wilcoxon rank-sum test). Regarding
biological and psychological markers of the stress reaction, base-
line SDNN and cortisol reactions (area under the curve with
respect to ground; Pruessner et al., 2003) were not significantly
correlated (r = —0.19, p = 0.18), nor were baseline SDNN and
perceived stress (r = —0.10, p = 0.49). Visual inspection of a
scatter plot revealed one outlier in the SDNN measure: the value
for this participant fell between 2 and 3 SDs from the sample
mean. Therefore, we checked our results for robustness with and
without this participant’s data and found that all results remained
significant in both cases.

One concern in the evaluation of HRV is that applying artifact
correction might inflate indices of HRV (Heathers, 2014; Quin-
tana and Heathers, 2014) and as few as one edited artifact in the
RR interval series may do so (Berntson and Stowell, 1998). In-
deed, we observed a significant positive correlation between the
number of artifacts that we corrected per dataset and the SDNN
(r = 0.44, p = 0.003; CI [0.26, 0.61]). Thus, we included the
number of corrected artifacts and mean heart rate as additional
covariates in our regression model to test whether HRV would be
predictive beyond these influences.

HRYV and self-control behavior

We originally defined SCS as choosing the healthier, but less tasty,
of two food items in challenging trials in which health and taste
conflicted, meaning that the participant had to overcome his own
taste preferences to choose the healthier option. We initially
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tested the relationship between total HRV (i.e., SDNN) and SCS
in a bivariate correlation analysis. Total HRV was associated with
the frequency of SCS in the dietary-choice task over all partici-
pants (Pearson’s r = 0.36, p = 0.01; CI [0.07, 0.59]; all p values are
derived from 5000 permutations of the data; excluding the HRV
outlier: = 0.33, p = 0.02, CI [0.03, 0.58]). For comparison, the
correlation between SCS and the cognitive restraint in eating
score (RE) obtained from the Three Factor Eating Questionnaire
(Pudel and Westenhofer, 1989) was r = 0.35 (p = 0.01; CI [0.11,
0.55]). This restraint score captures the degree to which individ-
uals use cognitive strategies to limit calorie intake, for example by
counting calories, deliberately picking small portions of food, or
consuming foods with lower calorie content. Thus, as a bio-
marker of dietary self-control, HRV explains approximately the
same amount of individual variance in choice behavior as an
established psychometric index of eating behavior. Restrained
eating scores were not significantly associated with HRV (r =
0.14, p = 0.35; CI [—0.28, 0.42]), suggesting that the two mea-
sures could be readily combined to explain additional variation in
self-control behavior.

Therefore, we modeled SCS (i.e., choosing a healthier, less
tasty item) in a multiple regression that included both HRV and
RE together (Eq. 2). Beyond testing whether HRV and RE could
be combined to explain additional variance in self-control, we
included RE in the model because it is a widely used, validated
measure for dietary SCS (Laessle et al., 1989; Allison et al., 1992;
Williamson et al., 2007). As such, it serves as a benchmark for
judging the utility of HRV as a biomarker for dietary self-control.
When including both RE and HRV into the same model, we can
assess whether HRV is predictive beyond a known trait charac-
teristic of dietary SCS. SCS was calculated according to the fol-
lowing equation (Eq. 2):

(Stress + HRV + RE) * (Hdiff + Tdiff) + error.

This regression allowed us to examine potential interactions be-
tween the individual characteristics of HRV and RE and task
features, such as the stress manipulation (Stress), as well as the
average health (Hdiff) and taste differences (Tdiff) a participant
faced within the food-choice task. Note that although all partici-
pants faced self-control challenges in the food-choice task, the
degree of the challenges depended on each individual’s opinions
on the taste and healthiness of the various foods.

Higher HRV and RE characteristics reduced the influence of
taste temptations in self-control dilemmas. All results from the
regression in Equation 2 are listed in Table 2. Higher HRV levels
increased the degree to which high taste temptations (i.e., taste
differences) were overcome, leading to greater SCS (Fig. 2b).
Moreover, unlike low-HRV participants, those with high HRV
successfully used self-control regardless of the average health dif-
ference between the two options, suggesting that they engaged
self-control even when the benefit of doing so (i.e., the increase in
healthiness) was relatively small (Fig. 2¢). A similar interaction
was observed between RE and taste differences. As previously
reported (Maier et al., 2015), acute stress reduced the use of self-
control in dietary choice. To determine whether HRV could act as
a buffer against acute stress, we computed an extended version of
the model in Eq. 2 that also included interactions between stress
and HRV and between stress and RE. However, we did not ob-
serve significant interactions between Stress and HRV or RE,
indicating that the relationship between HRV and dietary self-
control persisted in both in the Stress and Control groups, but
that HRV was not associated with resilience to acute stress. For
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Table 2. Predictors of SCS

Fixed effects B Estimate SEM T p
Intercept 0.45483 0.04434 10.258 2.28e-12
Stress —0.07869 0.06450 —1220 0.23021
Tdiff —0.02450 0.11721 —0.209 0.83555
Hdiff 0.35598 0.10108 3.522 0.00116
HRV 0.01239 0.03785 0327 0.74524
RE 0.02995 0.03951 0.758 0.45326
Stress X Tdiff —0.38367 0.11756 —3.264 0.00237
Stress X Hdiff 0.33003 0.11868 2.781 0.00848
HRV X Tdiff 0.30100 0.06253 4814 2.57e-05
HRV X Hdiff —0.20929 0.06429 —3.255 0.00242
RE X Tdiff 0.23935 0.07978 3.000 0.00481
RE X Hdiff —0.17495 0.08761 —1.997 0.05323

Results from a GLM of SCS. SCS was computed as the mean number of trials in which participants chose the healthier,
less tasty item in trials in which health and taste were not aligned (challenge trials). Resting HRV was defined as the
SD of all RR intervals over a 3 min period. The cognitive restraint in eating score (RE) was obtained from the Three
Factor Eating Questionnaire (Pudel and Westenhafer, 1989). The regressor, Stress, is a binary factor indicating that
the participant underwent the stress manipulation. The average health (Hdiff) and taste difference (Tdiff) regressors
represent the mean taste temptation and health gain that participants were faced with during the dietary choice
task. All estimates are reported with their SEM.

simplicity and ease of interpretation, we report the reduced
model without interaction terms in Table 2.

As a robustness check, we controlled for the influences of the
HRV outlier and several other factors that might relate to HRV.
We estimated the basic model (Eq. 2) without the HRV outlier,
and added the following: age, the combined number of cardio
and strength exercise sessions per week, BMI, hunger level, trait
anxiety score, mean heart rate, and number of corrected artifacts
in the recording as nuisance regressors. The results were qualita-
tively unchanged and we still observed a significant relationship
between taste and HRV as described above (T = 4.77, p = 4.85e-
05). Note that we included trait anxiety in this robustness check
because previous work has shown that trait anxiety is also corre-
lated with HRV (Gaburro et al., 2011; Verkuil et al., 2014), and
therefore we tested for this relationship in our data as well. We
used the trait scale of the Spielberger State-Trait Anxiety Inven-
tory as our measure of anxiety (median score for our sample:
34.5 * 5.9 out of possible score ranging from 20 to 80). Consis-
tent with previous reports, we observed a negative correlation
between HRV and trait anxiety scores (permutation r = —0.28,
p = 0.0488; CI [—0.48, —0.06]). Trait anxiety scores were also
positively correlated with mean resting heart rates across partic-
ipants (r = 0.39, p = 0.01; CI [0.11, 0.60]).

To assess the predictive qualities of RE and HRV with regard
to self-control in a more robust way, we predicted self-control
levels out-of-sample using the leave-one-subject-out (LOSO)
method. After taking one participant’s data out of the sample, we
fit the model in Eq. 2 to explain the variance in self-control levels
of the remaining participants. Using the 8 coefficients from the
training set, we then predicted the self-control level of the left-out
participant. Squaring the obtained correlation coefficient for the
true and predicted self-control levels in the full model (r = 0.88,
p < 0.0001, CI [0.81, 0.92]) yielded the coefficient of determina-
tion for the model with combined predictors of RE and HRV,
R? = 0.77 (Fig. 2a). For comparison, fitting the model without
the predictors for HRV and its interactions yielded a lower cor-
relation between true and predicted self-control levels (r = 0.81,
p < 0.0001, CI [0.63, 0.88]), leading to an observed R*> = 0.65.
That is, by combining RE and HRV, we could significantly ex-
plain an extra 12% of the variation in out-of-sample self-control
rates. Using a “split half” instead of an LOSO procedure (i.e.,
randomly sampling half the dataset for model fitting and using
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Figure 3.

HRV in Milliseconds
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HRV is correlated with BOLD signal in the vmPFC. a, Baseline HRV positively correlated with higher activity in Self-Control Challenge > No Challenge trials in the vmPFC (p << 0.05,

small-volume corrected). The color bar represents small-volume corrected p values. b, Within this functional ROI, the relative taste representation (taste of the chosen minus taste of the nonchosen
food) correlated negatively with individual HRV (r = —0.42, p = 0.002). ¢, There was no significant correlation between HRV and the relative health value (r = —0.12, p = 0.42).

the remaining half for predicting out of sample) yielded a similar
benefit (16%) for including HRV in the predictive model (full
model: r = 0.81, p < 0.0001, CI [0.55, 0.92], R* = 0.66; model
without HRV: r = 0.71, p = 0.0004, CI [0.26, 0.89], R*> = 0.50).

During the initial review of this manuscript, an anonymous
reviewer made the insightful suggestion that we could also test the
relationship between HRV and another form of self-control in
our dataset. Our food-choice paradigm included recommenda-
tions about which food to choose, and in some cases these rec-
ommendations were in favor of the unhealthy food (participants
were told that recommendations were usually, but not always
in favor of the healthier item). This feature enables us to test
whether HRV is associated with the fraction of trials in which
participants overrode this unhealthy recommendation and still
chose the healthier food. We found that there was also a positive
correlation between HRV and this alternative measure of control
(r = 0.31, p = 0.01, CI [0.01, 0.56]). These two measures of
self-control are not independent because both are based, in part,
on the incorporation of health attributes into the choice process
(correlation between self-control measures: r = 0.77, p < 0.0001,
CI[0.620.87]). Even so, this post hoc finding is consistent with the
idea that HRV is a domain general marker of self-regulatory abil-
ity or efficiency as outlined in the introduction section.

HRYV and BOLD activity during self-control

To investigate whether HRV could serve as a biomarker of changes
in the brain’s decision circuitry in the food self-control paradigm, we
analyzed BOLD activity measured during the choice task. Our pri-
mary general linear model (GLM-CH) tested for regions that corre-
lated with HRV during self-control challenges.

HRV positively correlated with self-control at the level of ob-
served choices. We hypothesized, therefore, that HRV would be
associated with BOLD activity in regions known to be involved in
the value computation process during self-controlled choices,
namely the vmPFC and dIPFC. We tested this hypothesis in ana-
tomical masks of the vmPFC and dIPFC based on the Harvard—
Oxford Cortical Atlas (Desikan et al., 2006). The vmPFC mask
comprised the bilateral vmPFC that is part of the brain’s valua-
tion system (Bartra et al., 2013; Clithero and Rangel, 2014; Abit-
bol et al., 2015; Pessiglione and Delgado, 2015) and has been
shown to integrate taste and health values in the dietary self-
control paradigm (Hare et al., 2009, 2011, 2014; Foerde et al.,
2015; Maier et al., 2015) as well as the separate characteristics of
multiattribute choices in other, nonfood domains (Kahnt et al.,
2011; Rudorf and Hare, 2014). Our second anatomical mask
included the region of the left dIPFC that has been presumed
to modulate activity in the vmPFC during self-control choices

(Hare et al., 2009, 2011, 2014). We found that BOLD activity
in portions of the vmPFC increased as a function of baseline
HRYV in Challenge > No Challenge trials [MNI peak: [1 46 0]
in the paracingulate/cingulate gyrus, small-volume-corrected
(SVC) p = 0.004, T = 4.8, and a separate, more dorsal cluster
in the cingulate gyrus at [21 41 9], SVC p = 0.038, T = 3.86;
Fig. 3a]. However, we found no association between HRV and
BOLD activity in the left dIPFC for the Challenge > No Chal-
lenge trials that survived SVC within the anatomical region of
the left dIPFC. Exploratory whole-brain analyses yielded no
other regions that survived correcting for multiple compari-
sons. The results of these exploratory analyses can be acc-
essed in a Neurovault repository under the following link:
http://www.neurovault.org/collections/ DNXFVQP]/.

To establish that activity in this vmPFC region (the larger
cluster with a peak at x, y, z = 1 46 0) was relevant to the partic-
ipants’ choices, we tested whether the chosen food values were
represented in the functional region of interest (ROI) correlating
with HRV. An integrated value of the chosen food was calculated
in a separate GLM (GLM-SV) and we extracted the betas for this
chosen food value in the vmPFC ROI. We found that activity in
this ROI encoded the integrated value of the chosen food (T',¢) =
3.52; p < 0.001).

Given our behavioral data linking HRV to the relative influ-
ence of taste on dietary choices, we tested whether HRV was also
correlated with the degree to which BOLD activity in the vmPFC
ROI represented taste attributes (Taste chosen — Nonchosen
from GLM-HT). We found that HRV was negatively correlated
with the relative taste value representation (Pearson’s r = —0.42,
p = 0.002, CI [—0.60, —0.19]; Fig. 3b), but not correlated with
the relative health value (r = —0.12, p = 0.42, CI [—0.43, 0.21];
Fig. 3¢). Excluding the HRV outlier did not change the results
(taster = —0.43,p = 0.004, CI[—0.63, —0.17]; health r = —0.09,
p = 0.56, CI [—0.43,0.23]).

Discussion

We found that higher HRV is associated with better self-control
in the face of dietary challenges. More specifically, our results
show that the choices of individuals with higher HRV are less
affected by tempting taste attributes than choices of participants
with lower HRV. In parallel, at the neural level, higher HRV
correlated with a decreased representation of taste attributes in
the vimPFC, a brain region that has been associated with both
regulating autonomic responses (Benarroch, 1993) and calculat-
ing subjective values of choice options (Bartra et al., 2013;
Clithero and Rangel, 2014; Abitbol et al., 2015; Pessiglione and
Delgado, 2015). HRV is a measure of physiological fitness that
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relates to the integrated functioning of the nervous and cardiac
systems. Similarly, successful self-control relies on the integra-
tion, and potentially modified evaluation, of actions in the
context of higher-order goal attainment. Our data indicate a sig-
nificant association between these integration processes at the
basic physiological (i.e., HRV) and cognitive (i.e., self-control)
levels, suggesting that HRV measures may serve as a useful and
readily obtainable biomarker for self-control abilities.

Resting HRV measured over a few minutes with relatively
inexpensive and commercially available equipment predicted
subsequent self-control in a dietary-choice task as well as a vali-
dated psychometric index of dietary behavior [restrained eating
scale of the Three Factor Eating Questionnaire (RE)]. Moreover,
as a physiological measure presumably outside the domain of
conscious control, HRV also has the advantage of being immune
to socially desirable reporting (Logan et al., 2008; DeVylder and
Hilimire, 2015) or memory errors that can affect the accuracy of
self-reports. However, when entered into a joint model, both
HRV and RE were significantly related to dietary self-control,
suggesting that they explained separate components of the vari-
ance in dietary choice. Thus, it is possible to combine biomarkers,
such as HRV, with behavioral and self-report measures (e.g., the
Three Factor Eating Questionnaire) to predict future self-control
more accurately.

The fact that such biomarkers as HRV can be easily acquired
and readily combined with other survey or task-based measures
of self-control is important because, taken in isolation, any single
measure is likely to reveal only a partial picture of self-control
abilities or proclivities. In a recent meta-analysis by Duckworth
and Kern (2011), informant-report and self-report question-
naires, behavioral readouts of executive function, and delay-
of-gratification measures showed only moderate convergent
validity. In other words, self-control assessed in one fashion was
only moderately related to self-control measured in another
manner. In agreement with those authors, we believe that self-
control is a multidimensional construct best assessed, and poten-
tially forecasted, by combining measures taken across multiple
domains, including behavior, self and informant report, and both
neural and more general physiological markers, such as HRV.

HRYV can explain individual differences in self-control that are
robust to changes in environmental context. We have previously
shown that experiencing an acute stressor results in diminished
self-control in the 45 min period following stressor onset (Maier
etal., 2015). In the same sample, we find that resting HRV before
stressor onset predicts the level of self-control following stress as
well as it predicts choice in the control (i.e., not stressed) partic-
ipants. Thus, the association between HRV and self-controlled
behavior is maintained under the influence of acute stress, sug-
gesting that the association between HRV and self-control may be
context-independent.

Our current findings linking resting HRV to subsequent self-
control performance extend previous work reporting correla-
tions between HRV and neural activity measured simultaneously
during affective and cognitive tasks. In a study using positron
emission tomography (PET) and an emotion task, Lane et al.
(2009) measured regional cerebral blood flow (rCBF) when par-
ticipants immersed themselves during 1 min blocks into positive,
negative, and neutral emotions (evoked by film clips and vi-
gnettes of personal emotional memories) while parallel PET and
HRV were recorded. During the presentation of emotional (vs
neutral) stimuli, HRV correlated with rCBF in the caudate, mid-
brain, left insula, and medial prefrontal cortex. When excluding
all emotion-specific activation, HRV correlated with rCBF in the
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right dIPFC, the bilateral parietal cortex, and the left rostral an-
terior cingulate cortex (ACC) with high-frequency (parasympa-
thetic) components of HRV. Similarly, Gianaros et al. (2004)
used PET to correlate HRV with changes in rCBF in medial or-
bitofrontal cortex (OFC), insula, ACC, amygdala, hippocampus,
and cerebellum as a function of task demand in a working-
memory paradigm. A study by Nugentetal. (2011) found HRV to
be correlated with rCBF in lateral and medial OFC when partic-
ipants had to achieve different levels of strength in a handgrip
task.

In contrast to Lane and colleagues’ (2009) emotion task re-
sults and our a priori predictions, we did not observe any signif-
icant correlations between HRV and activity in the dIPFC during
dietary choices. However, the differences in HRV indices and
measurement times (resting vs task) preclude direct comparisons
between the previous emotion regulation and current dietary
self-control results. It is possible that HRV measures collected
during the self-control task would tie in more closely with regu-
lation processes in the dIPFC. However, our goal in the current
study was to test whether simple, task-independent measures of
HRYV are associated with dietary self-control. What is consistent
across studies is that individual differences in HRV are correlated
with activity in neural regions linked to task performance across
several domains (e.g., emotion regulation, working memory,
physical effort, and dietary self-control). Together these results
indicate that efforts to link cognition with central and peripheral
neurophysiology may promote a better understanding of the na-
ture of individual differences in health and cognitive behaviors,
and provide opportunities for prediction and early intervention
against dysfunctions (Sokol-Hessner et al., 2009; Raio et al,,
2013).

Our study represents an important initial step in linking total
HRYV to self-control ability. This result suggests total HRV should be
considered when investigating links between self-control and allo-
static capacity in addition to more direct indices of phasic vagal
cardiac control of HRV, such as RMSSD and high-frequency HRV.
One rationale for doing so in the domain of dietary self-control is
that frequency components outside the high-frequency spectrum
may include information on metabolic and endocrine processes that
are directly relevant to dietary decisions. These components contrib-
ute to the total HRV, but oscillate on a slower time scale (Berntson et
al,, 1997).

Further progress could be made by addressing this question
with causal manipulations, for example by inducing endocrine
signals of hunger and satiety and investigating whether the asso-
ciation between total HRV and self-control success varies during
these states. Another interesting avenue to pursue is whether
plasticity-induced changes that enable better regulation, for ex-
ample through transcranial electrical or magnetic stimulation of
the dIPFC, might also lead to an increase in HRV. A study in
autistic children suggests this might be the case: Wang et al.
(2016) found that weekly treatment with low-frequency repeti-
tive transcranial magnetic stimulation for 3 months both im-
proved chronic autonomic imbalance (i.e., higher low-frequency
and lower high-frequency contributions to total HRV, putatively
reflecting a tonically high arousal level due to activation of the
sympathetic nervous system) and reduced the tonically elevated
skin conductance levels commonly seen in autism. This change
was accompanied by decreased irritability, reduced hyperactivity,
and less stereotyped and compulsive behavior in the autistic chil-
dren. Future work could therefore address this regulatory mech-
anism in a healthy population with a similar causal manipulation
by stimulation techniques to further explore the nature of the link
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between neural correlates of self-regulation and physiological
markers of allostatic capacity.

In conclusion, HRV is a marker of cardiovascular and mental
health. Our results indicate that HRV also explains significant
variation in self-control during dietary choice. Moreover, both
HRV and a standard psychometric scale of restrained eating con-
tributed independently to explaining variance in our behavioral
model of self-control and could be used in combination to better
predict dietary self-control levels.
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